EER-RL: Energy-Efficient Routing Based on Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
Deep reinforcement learning (deep RL) has been successful in learning sophisticated behaviors automatically; however, the learning process requires a huge number of trials. In contrast, animals can learn new tasks in just a few trials, benefiting from their prior knowledge about the world. This paper seeks to bridge this gap. Rather than designing a “fast” reinforcement learning algorithm, we p...
متن کاملRl: Fast Reinforcement Learning via Slow Reinforcement Learning
Deep reinforcement learning (deep RL) has been successful in learning sophisticated behaviors automatically; however, the learning process requires a huge number of trials. In contrast, animals can learn new tasks in just a few trials, benefiting from their prior knowledge about the world. This paper seeks to bridge this gap. Rather than designing a “fast” reinforcement learning algorithm, we p...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملSoar-RL: integrating reinforcement learning with Soar
In this paper, we describe an architectural modification to Soar that gives a Soar agent the opportunity to learn statistical information about the past success of its actions and utilize this information when selecting an operator. This mechanism serves the same purpose as production utilities in ACT-R, but the implementation is more directly tied to the standard definition of the reinforcemen...
متن کاملRoute Reinforcement for Efficient QoS Routing Based on Ant Algorithm
In this paper, we present a new method to calculate reinforcement value in QoS routing algorithm for real-time multimedia based on Ant algorithm to efficiently and effectively reinforce ant-like mobile agents to find the best route toward destination in a network. Simulation results show that the proposed method realizes QoS routing more efficiently and more adaptively than those of the existin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mobile Information Systems
سال: 2021
ISSN: 1875-905X,1574-017X
DOI: 10.1155/2021/5589145